FI1101 Elementary Physics I

Module designation	Elementary Physics I
Semester(s) in which the	1 st Semester (first year of undergraduate program)
module is taught	
Person responsible for the	Dr. Rer. Nat. Akfiny Hasdi Aimon, S.Si., M.Si.
module	
Language	Indonesian
Relation to curriculum	Compulsory
Teaching methods	Lecture and Tutorial
Workload (incl. contact hours,	Total workload: around 9 hours per week x 16 weeks = 144 hours
self-study hours)	 Contact hours: 3 hours x 16 weeks = 48 hours
	 Tutorial: 3 hours x 16 weeks = 48 hours
	 Self-study hours: 3 hours x 16 weeks = 48 hours
Credit points	3 CU/5 ECTS
Required and recommended	-
prerequisites for joining the	
module	
Module objectives/intended	1. Ability to demonstrate knowledge of vector concepts to solve
learning outcomes	the kinematics of 1- and 2- dimensional of single particle and
	system particles.
	2. Ability to demonstrate knowledge of vector concepts and
	Newton's Laws of dynamics about motion of single particle
	and system particles.
	3. Ability to apply the concept of workenergy in solving simple
	mechanics problems.
	4. Ability to formulate, solve, and analyze the problems in
	statics and dynamics of simple rigid body systems.
	5. Ability to understand the elastic properties of material and
	oscillations phenomena.
	6. Ability to solve the problem in statics and dynamic fluids
	7. Ability to demonstrate knowledge of thermodynamics laws
	and be able to solve and analyze the problems of
	thermodynamics
	8. Ability to design and conduct experiments to understand
	Newtonian methanics
	9. Ability to prepare and conduct the experiment to study the
	elastic properties of materials and oscillations phenomena 10. Ability to propert and conduct the oversiment related to
	fluide
	11 Ability to propage and conduct practical experiments related
	to thermodynamics of a system
	12 Having the ability to design and carry out simple experiments
	using Elementary Physics IB concents as well as analyzing and
	interpreting the resulting data.

Content	This course activities consists of lectures and practice with scope:
	Kinematics of Particles
	Relative Motion
	 Dynamics of Barticles (Newton's Laws of the Force)
	• Dynamics of Particles (Newton's Laws of the Porce
	Concept
	• Work and Energy (Impulse and Momentum, Conservation
	Laws)
	Dynamics System of Particles (Center of Mass)
	Rotational Motion (Angular Momentum, Rigid Body
	Rotation with a Fixed Axis)
	 Elasticity and Oscillations
	 Statics and Dynamic Fluids
	• Thermophysics (The Kinetic Theory of Gases, Heat and
	Work, The Zeroth, First, and Second Laws of
	Thermodynamics, The Efficiency of Cyclic Processes)
Examination forms	Quiz, Homework, Research-Based Learning (RBL), Experiments,
	Midterm Exam 1, Midterm Exam 2, and Final Exam
Study and examination	• Midterm exam 1: 20%
requirements	 Midterm exam 2: 20%
	• Final exam: 40%
	 Ouiz, homework, and experiments: 10%
	Research-based learning (project): 10%
Reading list	1 Cutnell I D Physics 10th John Wiley & Sons 2015
	2 Douglas C. Giancoli, Physics (Principles with Applications), 7th
	2. Douglas C. Giancoll, Filysics (Frinciples with Applications), 7th,
	Pedison, 2014